An Improved Otsu Threshold Segmentation Method for Underwater Simultaneous Localization and Mapping-Based Navigation

نویسندگان

  • Xin Yuan
  • José-Fernán Martínez
  • Martina Eckert
  • Lourdes López-Santidrián
چکیده

The main focus of this paper is on extracting features with SOund Navigation And Ranging (SONAR) sensing for further underwater landmark-based Simultaneous Localization and Mapping (SLAM). According to the characteristics of sonar images, in this paper, an improved Otsu threshold segmentation method (TSM) has been developed for feature detection. In combination with a contour detection algorithm, the foreground objects, although presenting different feature shapes, are separated much faster and more precisely than by other segmentation methods. Tests have been made with side-scan sonar (SSS) and forward-looking sonar (FLS) images in comparison with other four TSMs, namely the traditional Otsu method, the local TSM, the iterative TSM and the maximum entropy TSM. For all the sonar images presented in this work, the computational time of the improved Otsu TSM is much lower than that of the maximum entropy TSM, which achieves the highest segmentation precision among the four above mentioned TSMs. As a result of the segmentations, the centroids of the main extracted regions have been computed to represent point landmarks which can be used for navigation, e.g., with the help of an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-SLAM approach is a recursive and iterative estimation-update process, which besides a prediction and an update stage (as in classical Extended Kalman Filter (EKF)), includes an augmentation stage. During navigation, the robot localizes the centroids of different segments of features in sonar images, which are detected by our improved Otsu TSM, as point landmarks. Using them with the AEKF achieves more accurate and robust estimations of the robot pose and the landmark positions, than with those detected by the maximum entropy TSM. Together with the landmarks identified by the proposed segmentation algorithm, the AEKF-SLAM has achieved reliable detection of cycles in the map and consistent map update on loop closure, which is shown in simulated experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards terrain-aided navigation for underwater robotics

This paper describes an approach to autonomous navigation for an undersea vehicle that uses information from a scanning sonar to generate navigation estimates based on a simultaneous localization and mapping algorithm. Development of low-speed platform models for vehicle control and the theoretical and practical details of mapping and position estimation using sonar are provided. An implementat...

متن کامل

AEKF-SLAM: A New Algorithm for Robotic Underwater Navigation

In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM) applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low...

متن کامل

Magnetic Navigation and Tracking of Underwater Vehicles ⋆

This paper proposes novel methods with the potential to improve the performance of navigation and tracking systems in underwater environments. The work relies on well-established methods of potential field inversion and introduces a new analytic formulation designed to stabilize the solution of the inverse problem in real-time applications. The navigation method proposed exploits the terrain in...

متن کامل

Reducing Light Change Effects in Automatic Road Detection

Automatic road extraction from aerial images can be very helpful in traffic control and vehicle guidance systems. Most of the road detection approaches are based on image segmentation algorithms. Color-based segmentation is very sensitive to light changes and consequently the change of weather condition affects the recognition rate of road detection systems. In order to reduce the light change ...

متن کامل

Pose-Graph SLAM for Underwater Navigation

This chapter reviews the concept of pose-graph simultaneous localization and mapping (SLAM) for underwater navigation. We show that pose-graph SLAM is a generalized framework that can be applied to many diverse underwater navigation problems in marine robotics. We highlight three specific examples as applied in the areas of autonomous ship hull inspection and multi-vehicle cooperative navigation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016